Skip to main content

第一章 图像(Graphs)

本章的主要内容包括坐标系、距离公式、中点公式、二元方程的图形表示、直线、圆等内容。此部分用于复习坐标系和方程图像,是最基本的数学知识,但与人工智能相关的数学关系不大,可以跳过或快速略读。但是为了保证知识的完整性和连贯性,在本系列课程中,仍然保留了本章。

1.1 距离和中点公式(The Distance and Midpoint formulas)

直角坐标系(Rectangular Coordinates)

上图为一个直角坐标系图,其中水平的线为 xx 轴(xx-axis),垂直的线为 yy 轴(yy-axis),两条线的交点为原点 OO(origin OO)

  • 对于xx轴,原点左侧为负数,原点右侧为正数
  • 对于yy轴,原点下部为负数,原点上部为正数

直角坐标系也叫笛卡尔坐标系(Cartesian coordinate system)

坐标系上的一个点 PP 由一个有序对偶(ordered pair)(x,y)(x,y) 表示,x,yx,y均为实数(real numbers)。

一个坐标系被 xx轴和yy轴分为四个部分,这四个部分称为象限(Quadrants)

  • 第一象限x>0,y>0x>0,y>0
  • 第二象限x<0,y>0x<0,y>0
  • 第三象限x<0,y<0x<0,y<0
  • 第四象限x>0,y<0x>0,y<0

距离公式(Distance Formula)

THEOREM 距离公式(Distance Formula)

两点P1=(x1,y1),P2=(x2,y2)P_1 = (x_1,y_1), P_2 = (x_2,y_2)之间的距离表示为 d(P1,P2)d(P_1,P_2)。则

d(P1,P2)=(x2x1)2+(y2y1)2d(P_1,P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

例: 计算(4,5),(3,2)(-4,5),(3,2)两点之间的距离

Solution

d=[3(4)]2+(25)2=72+(3)2=49+9=587.62\begin{array}{ll} d=\sqrt{[3-(-4)]^2 + (2-5)^2} &= \sqrt{7^2+(-3)^2} \\ &=\sqrt{49+9} \\ &=\sqrt{58} \\ &\approx 7.62 \end{array}

中点公式(Midpoint Formula)

中点公式用于求一个 线段(line segment) 的中点。

THEOREM 中点公式(Midpoint Formula)

一条从P1=(x1,y1)P_1 = (x_1,y_1)P2=(x2,y2)P_2 = (x_2,y_2)的线段的中点为M=(x,y)M=(x,y)。则

M=(x,y)=(x1+x22,y1+y22)M = (x,y) = \Big(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\Big)

例: 找出线段P1=5,5P_1={-5,5}P2=(3,1)P_2=(3,1)的中点。

Solution

x=x1+x22=5+32=1,y=y1+y22=5+12=3\begin{array}{l} \displaystyle x = \frac{x_1+x_2}{2} = \frac{-5+3}{2} = -1,\\ \\ \displaystyle y = \frac{y_1+y_2}{2} = \frac{5+1}{2} = 3 \end{array}

因此中点 M=(1,3)M=(-1,3)

1.2 二元方程的图像;截距;对称性

通过绘制点来绘制方程图像

Graphs of Equations in Two Variables; Intercepts; Symmetry

两个变量xxyy的方程的图像由xyxy平面上满足方程的坐标点(x,y)(x,y)的集合组成。

The graph of an equation in two variables xx and yy consists of the set of points in the xyxy-plane whose coordinates (x,y)(x, y) satisfy the equation.

consists of: to be formed from the people or things mentioned 由…组成

上面的定义读起来有些拗口,我们用更直白一点的表述来解释。

DEFINITION

一个由变量xxyy构成的二元方程(注:这里没有强调是几次,即定义适用于二元nn次方程)在xyxy平面上的图像,由能满足此方程(即带入后,使方程的等号两边相等)的坐标点(x,y)(x, y)的集合组成。

例: 对于方程 x2+y2=5x^2 + y^2 = 5的所有坐标点为 {(x,y)x2+y2=5}\{(x,y) | x^2 + y^2 = 5\}。满足此方程的点有 (1,2),(1,2),(1,2)...(1,2),(-1,2),(1,2)...

判断一个点是否能够满足方程,只需将xxyy带入方程,如果等号两边相等,即为满足。

例: 画出方程 y=2x+5y = 2x +5的图像。

Solution

图像的截距

图像与坐标轴相交或相切的点称为图的截距。

The points, if any, at which a graph crosses or touches the coordinate axes are called the intercepts of the graph.

xx轴相交或相切的点的xx坐标,称为 xx-截距。与yy轴相交或相切的点的yy坐标,称为 yy-截距

The xx-coordinate of a point at which the graph crosses or touches the xx-axis is an xx-intercept, and the yy-coordinate of a point at which the graph crosses or touches the yy-axis is a yy-intercept.

:点(3,0)(3,0)是一个截距,数字33就是 xx-截距

例:找出一个方程的截距

找出方程y=x24y=x^2-4xx-截距yy-截距

Solution

解:要找出 xx-截距,则令 y=0y=0,得到以下方程

x24=0(x+2)(x2)=0x+2=0orx2=0x=2orx=2\begin{array}{rl} x^2-4 &=0 \\ (x+2)(x-2) &=0 \\ x+2=0 \quad \text{or} \quad x-2 &=0 \\ x = -2 \qquad \text{or} \quad x&=2 \end{array}

因此方程的 xx-截距2-222

要找出 yy-截距,则令 x=0x=0,得到以下方程

y=x24=024=4\begin{array}{rl} y &=x^2 -4 \\ &=0^2 -4 = -4 \\ \end{array}

因此方程的 yy-截距4-4

方程关于原点、xx轴、yy轴的对称性(Symmetry)

DEFINITION 关于x轴对称

如果对于图像上的每一个点(x,y)(x,y),都有 (x,y)(x,-y)也位于图像上,则称图像关于xx轴对称。

英文定义原文
DEFINITION Symmetry with Respect to the x-Axis

A graph is symmetric with respect to the xx-axis if, for every point (x,y)(x,y) on the graph, the point (x,y)(x,-y) is also on the graph.

Example: (3,2)(3,2)关于 xx轴对称的点为 (3,2)(3,-2)

关于xx轴对称,相当于上下翻转,因此点在xx轴的位置不变,在yy轴的位置变到另一边。

DEFINITION Symmetry with Respect to the y-Axis

A graph is symmetric with respect to the yy-axis if, for every point (x,y)(x, y) on the graph, the point (x,y)(-x,y) is also on the graph.

DEFINITION Symmetry with Respect to the Origin

A graph is symmetric with respect to the origin if, for every point (x,y)(x, y)
on the graph, the point (x,y)(-x, -y) is also on the graph.

Tests for Symmetry

To test the graph of an equation for symmetry with respect to the

  • xx-Axis Replace yy by y-y in the equation and simplify. If an equivalent equation results, the graph of the equation is symmetric with respect to the xx-axis.
  • yy-Axis Replace xx by x-x in the equation and simplify. If an equivalent equation results, the graph of the equation is symmetric with respect to the yy-axis.
  • Origin Replace xx by x-x and yy by y-y in the equation and simplify. If an equivalent equation results, the graph of the equation is symmetric with respect to the origin.

Example: Test 4x2+9y2=364x^2 + 9y^2 = 36 for symmetry.

Solution

  • xx-Axis: To test for symmetry with respect to the xx-axis, replace yy by y-y. Since 4x2+9(y)2=364x^2 + 9(-y)^2 = 36 is equivalent to 4x2+9y2=364x^2 + 9y^2 = 36, the graph of the equation is symmetric with respect to the x-axis.
  • yy-Axis: To test for symmetry with respect to the yy-axis, replace xx by x-x. Since 4(x)2+9y2=364(-x)^2 + 9y^2 = 36 is equivalent to 4x2+9y2=364x^2 + 9y^2 = 36, the graph of the equation is symmetric with respect to the y-axis.
  • Origin: To test for symmetry with respect to the origin, replace xx by x-x and yy by y-y. Since 4(x)2+9(y)2=364(-x)^2 + 9(-y)^2 = 36 is equivalent to 4x2+9y2=364x^2 + 9y^2 = 36, the graph of the equation is symmetric with respect to the origin.

1.3 Lines

Calculate and interpret the Slope of a line

Slope:斜率

是描述与度量该线“方向”和“陡度”的数字,斜率也用来计算斜坡的“斜度”(倾斜程度)。一直线的斜率在其上任一点皆相等。

DEFINITION Slope

Let P=(x1,y1)P = (x_1, y_1) and Q=(x2,y2)Q = (x_2, y_2) be two distinct points. If x1x2x_1 \ne x_2, the slope m of the nonvertical line LL containing PP and QQ is defined by the formula

m=y2y1x2x1x1x2\boxed{\qquad\qquad m=\frac{y_2-y_1}{x_2-x_1} \qquad x_1 \ne x_2 \qquad\qquad}

If x1=x2x_1 = x_2, then LL is a vertical line and the slope mm of LL is undefined (since this results in division by 0).

斜率的角度公式:m=ΔxΔy=tanθm=\dfrac{\Delta x}{\Delta y} = \tan{\theta},其中θ\theta为直线与xx-轴的夹角。

m=y2y1x2x1=RiseRunor as m=y2y1x2x1=Change in yChange in x=ΔxΔym=\frac{y_2-y_1}{x_2-x_1} = \frac{\text{Rise}}{\text{Run}} \quad \text{or as } \quad m=\frac{y_2-y_1}{x_2-x_1} = \frac{\text{Change in $y$}}{\text{Change in $x$}}=\dfrac{\Delta x}{\Delta y}

That is, the slope m of a nonvertical line measures the amount yy changes when xx changes from x1x_1 to x2x_2. The expression ΔxΔy\dfrac{\Delta x}{\Delta y} is called the average rate of change of yy with respect to xx.

  • Since any two distinct points can be used to compute the slope of a line, the average rate of change of a line is always the same number.
  • The slope of a line may be computed from P=(x1,y1)P = (x_1, y_1) to Q=(x2,y2)Q = (x_2, y_2) or from QQ to PP because
y2y1x2x1=y1y2x1x2\frac{y_2-y_1}{x_2-x_1} = \frac{y_1-y_2}{x_1-x_2}

Find the Equation of a Vertical Line

THEOREM Equation of a Vertical Line

A vertical line is given by an equation of the form

x=ax=a

where aa is the xx-intercept.

Use the Point–Slope Form of a Line; Identify Horizontal Lines

THEOREM Point-Slope From of an Equation of a Line

An equation of a nonvertical line with slope m that contains the point (x1,y1)(x_1, y_1) is

yy1=m(xx1)y-y_1 = m(x - x_1)

Point-Slope From:点斜式。

通过方程的一个点和方程的斜率,可以还原出方程。

Example: Find the point-slope form of an equation of the line with slope 44, containing the point (1,2)(1, 2).

Solution

An equation of the line with slope 44 that contains the point (1,2)(1, 2) can be found by using the point-slope form with m=4,x1=1, and y1=2m = 4, x_1 = 1\text{, and }y_1 = 2.

yy1=m(xx1)y2=4(x1)m=4,x1=1,y1=2y=4x4+2y=4x2\begin{array}{rcl} y - y_1 & = &m(x-x_1) \\ y-2 & = & 4(x-1) \qquad \color{blue} m=4,x_1 = 1,y_1=2 \\ y & = & 4x-4+2 \\ y & = & 4x-2 \\ \end{array}

Finding the Equation of a Horizontal Line

THEOREM Equation of a Horizontal Line

A horizontal line is given by an equation of the form

y=by=b

where bb is the yy-intercept.

Use the Slope-Intercept Form of a Line

THEOREM Slope–Intercept Form of an Equation of a Line

An equation of a line with slope mm and yy-intercept bb is

y=mx+by = mx+b

Slope–Intercept Form: 斜截式

y=5x+2slopey-intercept\begin{array}{lll} y=&5x+&2 \\ &\color{blue}\uarr&\color{blue}\uarr\\ &\color{blue}\text{slope} & \color{blue}y\text{-intercept} \end{array}

Graph Lines Written in General Form Using Intercepts

DEFINITION General Form

The equation of a line is in general form* when it is written as

Ax+By=CAx+By=C

where A,BA, B, and CC are real numbers and AA and BB are not both 00.